Carnegie Mellon University HemzCollege

95-865 Unstructured Data Analytics

Week 1: Course overview, analyzing text using frequencies

George Chen

Big Data

We're now collecting data on virtually every human endeavor
amazon.com

ETFLIX

 fitbit

LIFE CHANGING MEDICINE

How do we turn these data into actionable insights?

Two Types of Data

Structured Data

Well-defined elements, relationships between elements

Image source: http://revision-zero.org/images/logical_data_independence/ hospital_appointments.gif

Unstructured Data

No pre-defined model-elements and relationships ambiguous

Examples:
Often: Want to use heterogeneous data to make decisions

- Text
- Images
- Videos
- Audio

Of course, there is structure in this data but the structure is not neatly spelled out for us

We have to extract what elements matter and figure out how they are related!

Example 1: Health Care

Forecast whether a patient is at risk for getting a disease?

Data

- Chart measurements (e.g., weight, blood pressure)
- Lab measurements (e.g., draw blood and send to lab)
- Doctor's notes
- Patient's medical history
- Family history
- Medical images

Example 2: Electrification

Where should we install cost-effective solar panels in developing countries?

Data

- Power distribution data for existing grid infrastructure
- Survey of electricity needs for different populations
- Labor costs
- Raw materials costs (e.g., solar panels, batteries, inverters)
- Satellite images

Example 3: Online Education

What parts of an online course are most confusing and need refinement?

Data

- Clickstream info through course website
- Video statistics
- Course forum posts
- Assignment submissions

Unstructured Data Analysis

Question Data Finding Structure Insights

The dead body
This is provided Some times you by a practitioner have to collect more evidence!

Puzzle solving, careful analysis
Exploratory data analysis

When? Where? Why? How? Perpetrator catchable?
Answer original question

There isn't always a follow-up prediction problem to solve!
UDA involves lots of data \rightarrow write computer programs to assist analysis

95-865

Prereq: Python programming

Part I: Exploratory data analysis

Part II: Predictive data analysis

95-865

Part I: Exploratory data analysis
Identify structure present in "unstructured" data

- Frequency and co-occurrence analysis
- Visualizing high-dimensional data/dimensionality reduction
- Clustering
- Topic modeling

Part II: Predictive data analysis
Make predictions using structure found in Part I

- Classical classification methods
- Neural nets and deep learning for analyzing images and text

Course Goals

By the end of this course, you should have:

- Lots of hands-on programming experience with exploratory and predictive data analysis
- A high-level understanding of what methods are out there and which methods are appropriate for different problems
- A very high-level understanding of how these methods work and what their limitations are
- The ability to apply and interpret the methods taught to solve problems faced by organizations

I want you to leave the course with practically useful skills solving real-world problems with unstructured data analytics!

Deliverables \& Grading

Contribution of Different Assignments to Overall Grade

All assignments involve coding in Python
(popular amongst machine learning/computer science community)
HW3 uses Amazon Web Services for cloud computing
(many real datasets too large to either fit or process on personal machine)

Collaboration \& Academic Integrity

- If you are having trouble, ask for help!
- We will answer questions on Piazza and will also expect students to help answer questions!
- Do not post your candidate solutions on Piazza
- In the real-world, you will unlikely be working alone
- We encourage you to discuss concepts/how to approach problems
- Please acknowledge classmates you talked to or resources you consulted (e.g., stackoverflow)
- Do not share your code with classmates (instant message, email, Box, Dropbox, AWS, etc)

> Penalties for cheating are severe e.g., 0 on assignment, F in course $=($

Course Textbook

No existing textbook matches the course... =(

Main source of material: lectures slides

We'll post complimentary reading as we progress

Check course website

http://www.andrew.cmu.edu/user/georgech/95-865/
Assignments will be posted and submitted on canvas
Please post questions to piazza (link is within canvas)
canvas plazza

The Two Quizzes

Format:

- You bring a laptop computer and produce a Jupyter notebook that answers a series of questions
- Each quiz is 80 minutes
- Open notes, open internet, closed to collaboration
- You are responsible for making sure your laptop has a compute environment set up appropriately and has enough battery life (or you sit close to a power outlet)
- Late exams will not be accepted
- Quiz 1: Feb 7 (recitation slot)
- Quiz 2: Feb 28 (recitation slot)

Late Homework Policy

- You are allotted 2 late days
- If you use up a late day on an assignment, you can submit up to 24 hours late with no penalty
- If you use up both late days on the same assignment, you can submit up to 48 hours late with no penalty
- Late days are not fractional
- This policy is in place precisely to account for various emergencies (health issues, etc) and you will not be given additional late days

Cell Phones and Laptops

Just like what you'd expect in a movie theater

We don't want your device screens/sounds distracting classmates

Course Staff

Teaching Assistants

George Chen

Office hours:
Check course website http://www.andrew.cmu.edu/user/georgech/95-865/

Part 1.
 Exploratory Data Analysis

Play with data and make lots of visualizations to probe what structure is present in the data!

Basic text analysis: how do we represent text documents?

WIKIPEDIA

The Free Encyclopedia

Main page

Contents
Featured content
Current events
Random article Donate to Wikipedia Wikipedia store

Interaction
Help
About Wikipedia Community portal Recent changes Contact page Tools

Opioid epidemic

From Wikipedia, the free encyclopedia

The opioid epidemic or opioid crisis is the rapid increase in the use of prescription and non-prescription opioid drugs in the United States and Canada in the 2010s. Opioids are a diverse class of

 very strong painkillers, including oxycodone (commonly sold under the trade names OxyContin and Percocet), hydrocodone (Vicodin), and fentanyl, which are synthesized to resemble opiates such as opium-derived morphine and heroin. The potency and availability of these substances, despite their high risk of addiction and overdose, have made them popular both as formal medical treatments and as recreational drugs. Due to their sedative effects on the part of the brain which regulates breathing, opioids in high doses present the potential for respiratory depression, and may cause respiratory failure and death. ${ }^{[2]}$

Overdose Deaths Involving Opioids, United States, 20002015. Deaths per 100,000 population. ${ }^{[1]}$

Term frequencies	
The: 1	
opioid: 3	$/ 28$
epidemic: 1	$/ 28$
or: 1	$/ 28$
crisis: 1	$/ 28$
is: 1	$/ 28$
the: 4	$/ 28$
rapid: 1	$/ 28$
increase: 1	$/ 28$
in: 3	$/ 28$
use: 1	$/ 28$
of: 1	$/ 28$
prescription: 1	$/ 28$
and: 2	$/ 28$
non-prescription:	$1 / 28$
drugs: 1	$/ 28$
United: 1	$/ 28$
States: 1	$/ 28$
Canada: 1	$/ 28$
2010s.: 1	$/ 28$

The opioid epidemic or opioid crisis is the rapid increase in the use of prescription and non-prescription opioid drugs in the United States and Canada in the 2010s.

Total number of words in sentence: 28

Histogram

Fraction of words in the sentence that are "opioid"

Term frequencies

The: 1
opioid: 3
epidemic: 1
or: 1
crisis: 1
is: 1
the: 4
rapid: 1
increase: 1
in: 3
use: 1
of: 1
prescription: 1
and: 2
non-prescription: 1 8 drugs: 1 /28
United: 1 /28
States: 1 /28
Canada: 1 /28
2010s.: 1
/28
opioid The epidemic or opioid crisis is the rapid increase in the use of prescription and non-prescription opioid drugs in the United States and Canada in the 2010s.

Histogram

Fraction of words in the sentence that are "opioid"

Term frequencies	
The: 1	/28
opioid: 3	/28
epidemic: 1	/28
or: 1	/28
crisis: 1	/28
is: 1	/28
the: 4	/28
rapid: 1	/28
increase: 1	/28
in: 3	/28
use: 1	/28
of: 1	/28
prescription: 1	/28
and: 2	/28
non-prescription: 1 /28	
drugs: 1	/28
United: 1	/28
States: 1	/28
Canada: 1	/28
2010s.: 1	/28

Term frequencies
The: 1
opioid: 3
epidemic: 1
or: 1
crisis: 1
is: 1
the: 4
rapid: 1
increase: 1
in: 3 /28
use: 1 /28
prescription: 1 /28
and: 2 /28
non-prescription: 1 /28
drugs: 1 /28
United: 1 /28
States: 1 /28
Canada: 1 /28
2010s.: 1
/28
/28
8
increase the drugs opioid in The

States or prescription opioid and of is rapid in opioid crisis the use nonprescription Canada 2010s. in United and the epidemic the

Histogram

Total number of words in sentence: 28

Bag of Words Model

Ordering of words doesn't matter

What is the

 probability of drawing the word "opioid" from the bag?
Handling Many Documents

- We can of course apply this technique of word frequencies to an entire document and not just a single sentence
\rightarrow For a collection of documents (e.g., all of Wall Street Journal between late 1980's and early 1990's, all of Wikipedia up until early 2015, etc), we call the resulting term frequency the collection term frequency (ctf)

What does the ctf of "opioid" for all of Wikipedia refer to?

Many natural language processing (NLP) systems are trained on very large collections of text (also called corpora) such as the Wikipedia corpus and the Common Crawl corpus

So far did we use anything special about text?

Basic Probability in Disguise

"Sentence":

This is an example of a probability distribution
Probability distributions will appear throughout the course and are a key component to the success of many modern Al methods

Now let's take advantage of properties of text

In other words: natural language humans use has a lot of structure that we can exploit

Some Words Don't Help?

 HistogramRaw Count "Frequency"

How helpful are these words to understanding semantics?
Bag-of-words models: many frequently occurring words unhelpful We can remove these words first (remove them from the "bag") \rightarrow words that are removed are called stopwords

Example Stopword List (from spaCy)

'a', 'about', 'above', 'across', 'after', 'afterwards', 'again', 'against', 'all', 'almost', 'alone', 'along', 'already', 'also', 'although', 'always', 'am', 'among', 'amongst', 'amount', 'an', 'and', 'another', 'any', 'anyhow', 'anyone', 'anything', 'anyway', 'anywhere', 'are', 'around', 'as', 'at', 'back', 'be', 'became', 'because', 'become', 'becomes', 'becoming', 'been', 'before', 'beforehand', 'behind', 'being', 'below', 'beside', 'besides', 'between', 'beyond', 'both', 'bottom', 'but', 'by', 'ca', 'call', 'can', 'cannot', 'could',
'did', 'do', 'does', 'doing', 'done', 'down', 'due', 'during', 'each', 'eight', 'either', 'eleven', 'else', 'elsewhere', 'empty', 'enough', 'etc', 'even', 'ever', 'every', 'everyone', 'everything', 'everywhere', 'except', 'few', 'fifteen', 'fifty', 'first', 'five', 'for', 'former', 'formerly', 'forty', 'four', 'from', 'front', 'full', 'further', 'get', 'give', 'go', 'had', 'has', 'have', 'he', 'hence', 'her', 'here', 'hereafter', 'hereby', 'herein', 'hereupon', 'hers', 'herself', 'him', 'himself', 'his', 'how', 'however', 'hundred', 'i', 'if', 'in', 'inc', 'indeed', 'into', 'is', 'it', 'its', 'itself', 'just', 'keep', 'last', 'latter', 'latterly', 'least', 'less', 'made', 'make', 'many', 'may', 'me', 'meanwhile', 'might', 'mine', 'more', 'moreover', 'most', 'mostly', 'move', 'much', 'must', 'my', 'myself', 'name', 'namely', 'neither', 'never', 'nevertheless', 'next', 'nine', 'no', 'nobody', 'none', 'noone', 'nor', 'not', 'nothing', 'now', 'nowhere', 'of', 'off', 'often', 'on', 'once', 'one', 'only', 'onto', 'or', 'other', 'others', 'otherwise', 'our', 'ours', 'ourselves', 'out', 'over', 'own', 'part', 'per', 'perhaps', 'please', 'put', 'quite', 'rather', 're', 'really', 'regarding', 'same', 'say', 'see', 'seem', 'seemed', 'seeming', 'seems',
'serious', 'several', 'she', 'should', 'show', 'side', 'since', 'six', 'sixty', 'so', 'some', 'somehow', 'someone', 'something', 'sometime', 'sometimes', 'somewhere', 'still', 'such', 'take', 'ten', 'than', 'that', 'the', 'their', 'them', 'themselves', 'then', 'thence', 'there', 'thereafter', 'thereby', 'therefore', 'therein', 'thereupon', 'these', 'they', 'third', 'this', 'those', 'though', 'three', 'through', 'throughout', 'thru', 'thus', 'to', 'together', 'too', 'top', 'toward', 'towards', 'twelve', 'twenty', 'two', 'under', 'unless', 'until', 'up', 'upon', 'us', 'used', 'using', 'various', 'very', 'via', 'was', 'we', 'well', 'were', 'what', 'whatever', 'when', 'whence', 'whenever', 'where', 'whereafter', 'whereas', 'whereby', 'wherein', 'whereupon', 'wherever', 'whether', 'which', 'while', 'whither', 'who', 'whoever', 'whole', 'whom', 'whose', 'why', 'will', 'with', 'within', 'without', 'would', 'yet', 'you', 'your', 'yours', 'yourself', 'yourselves'

Is removing stop words always a good thing?

"To be or not to be"

Some Words Mean the Same Thing?

Term frequencies
The: 1
opioid: 3
epidemic: 1
or: 1
crisis: 1
is: 1
the: 4
rapid: 1
increase: 1
in: 3
use: 1
of: 1
prescription: 1
and: 2
non-prescription: 1
drugs: 1
United: 1
States: 1
Canada: 1
2010s.: 1

Should capitalization matter?

What about:

- walk, walking
- democracy, democratic, democratization
- good, better

Merging modified versions of "same" word to be analyzed as a single word is called lemmatization
(we'll see software for doing this shortly)

What about a word that has multiple meanings?

Challenging: try to split up word into multiple words depending on meaning (requires inferring meaning from context)

Treat Some Phrases as a Single Word?

```
Term frequencies
The: 1
opioid: 3
epidemic: }
or: 1
crisis: }
is: }
the: 4
rapid: 1
increase: 1
in: 3
use: 1
of: }
prescription: }
and: }
non-prescription: 1
drugs: 1
First need to detect what are "named entities": called named entity recognition
(we'll see software for doing this shortly)
United: 1
States: }
```


Some Other Basic NLP Tasks

- Tokenization: figuring out what are the atomic "words" (including how to treat punctuation)
- Part-of-speech tagging: figuring out what are nouns, verbs, adjectives, etc
- Sentence recognition: figuring out when sentences actually end rather than there being some acronym with periods in it, etc

Bigram Model

The opioid epidemic or opioid crisis is the rapid increase in the use of prescription and non-prescription opioid drugs in the United States and Canada in the 2010s.

If using stopwords, remove any phrase with at least 1 stopword
1 word at a time: unigram model
2 words at a time: bigram model
n words at a time: n-gram model

The spaCy Python Package

Demo

Recap: Basic Text Analysis

- Represent text in terms of "features" (such as how often each word/phrase appears)
- Can repeat this for different documents: represent each document as a "feature vector"
"Sentence":

$$
\begin{aligned}
& {\left[\begin{array}{l}
0.2 \\
0.3 \\
0.4 \\
0.1
\end{array}\right] \quad \begin{array}{c}
\text { This is a point in } \\
\text { 4-dimensional } \\
\text { space, } \mathbb{R}^{4}
\end{array}} \\
& \text { \# dimensions = number of terms }
\end{aligned}
$$

In general (not just text): first represent data as feature vectors

Finding Possibly Related Entities

The solar batteries have reportedly been spotted in San Juan's airport.

By John Patrick Pullen October 16, 2017

Exactly one week after Tesla CEO-Elon Musk suggested his company could help with Puerto Rico's electricity crisis in the aftermath of Hurricane Maria, more of the company's Powerwall battery packs have arrived on the island, according to a photo snapped at San Juan airport Friday, Oct. 13.

Source: http://fortune.com/2017/10/16/elon-musks-tesla-powerwalls-have-landed-in-puerto-rico/

Co-Occurrences

For example: count \# news articles that have different named entities co-occur

	Apple	Facebook	Tesla
Elon Musk	10	15	300
Mark Zuckerberg	500	10000	500
Tim Cook	200	30	10

Big values \rightarrow possibly related named entities

Different Ways to Count

- Just saw: for all doc's, count \# of doc's in which two named entities co-occur
- This approach ignores \# of co-occurrences within a specific document (e.g., if 1 doc has "Elon Musk" and "Tesla" appear 10 times, we count this as 1)
- Could instead add \# co-occurrences, not just whether it happened in a doc
- Instead of looking at \# doc's, look at co-occurrences within a sentence, or a paragraph, etc

Bottom Line

- There are many ways to count co-occurrences
- You should think about what makes the most sense/is reasonable for the problem you're looking at

Co-Occurrences

For example: count \# news articles that have different named entities co-occur

Big values \rightarrow possibly related named entities
How to downweight "Mark Zuckerberg" if there are just way more articles that mention him?

